

## Exercises for 'Functional Analysis 2' [MATH-404]

(24/02/2024)

### **Ex 2.1 (Topological vector spaces induced by seminorms)**

Let  $X$  be a vector space equipped with a family of seminorms  $(p_i)_{i \in I}$ . Define a topology  $\tau$  on  $X$  by setting

$$U \in \tau \iff \forall x \in U \ \exists I_0 \subset I \text{ finite}, \varepsilon > 0 : B_{\varepsilon, I_0}(x) \subset U$$

with  $B_{\varepsilon, I_0}(x) = \{y \in X : p_i(x - y) < \varepsilon \quad \forall i \in I_0\}$ . Show that this notion indeed defines a topology on  $X$  and that  $(X, \tau)$  becomes a topological vector space.

### **Ex 2.2 (The weak topology on a Banach space as LCTVS)**

Let  $(X, \|\cdot\|)$  be a Banach space (over  $\mathbb{R}$ ). Recall that the **weak topology** on  $X$  is the coarsest topology such that all linear functionals  $f : X \rightarrow \mathbb{R}$  that are continuous with respect to the norm convergence remain continuous. Show that  $X$  equipped with the weak topology becomes a locally convex topological vector space.

**Hint:** Construct seminorms inducing the weak topology. A corollary of the Hahn–Banach Theorem might be useful to separate points.

### **Ex 2.3 ( $L^p$ spaces for $0 < p < 1$ )**

Let  $(\Omega, \mathcal{A}, \mu)$  be a measure space and let  $p \in (0, 1)$ . Define

$$L^p(\mu) = \left\{ f : \Omega \rightarrow \mathbb{R} : \int_{\Omega} |f|^p d\mu < +\infty \right\},$$

$$\rho(f) = \int_{\Omega} |f|^p d\mu.$$

As usual, we identify the functions that are equal  $\mu$ -almost everywhere.

a) Prove that  $L^p(\mu)$  is a vector space and that  $d(f, g) = \rho(f - g)$  is a translation-invariant metric on  $L^p(\mu)$ .

**Hint:** For  $p \in (0, 1)$  the estimate  $(s + t)^p \leq s^p + t^p$  holds for all  $s, t \geq 0$

b) Show that the topology induced by  $d$  turns  $L^p(\mu)$  into a TVS.  
 c) Assume that  $\mu$  is the Lebesgue measure on  $\Omega = \mathbb{R}$ . Show that for every  $\delta > 0$

$$\sup \{ \rho(f) : f \in \text{co}(B_{\delta}) \} = +\infty,$$

where  $B_{\delta} = \{f : \rho(f) < \delta\}$  and  $\text{co}(B_{\delta})$  is the convex hull of  $B_{\delta}$ .

**Hint:** Consider for some  $\lambda > 0$  the functions  $g_n = \lambda \chi_{[n, n+1]}$  and certain convex combinations.

### Ex 2.4 (LCTVS with countable family of seminorms is metrizable)

Let  $X$  be a LCTVS with the topology defined by a countable family of seminorms  $(p_n)_{n \in \mathbb{N}}$ .

a) Consider the function  $f(a) = a/(1+a)$ ,  $a \geq 0$ . Show that

$$f(a) \leq f(a+b) \leq f(a) + f(b).$$

for all  $b \geq 0$ .

b) Show that

$$d(x, y) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(x-y)}{1+p_n(x-y)}$$

is a translation-invariant metric on  $X$  and the balls in this metric are balanced.

**Hint:** To demonstrate various properties of  $d$  it is convenient to prove instead the respective properties of the function  $d_0(x) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(x)}{1+p_n(x)}$ , and use the identity  $d(x, y) = d_0(x-y)$ .

c) Verify that the metric topology induced by  $d$  is the same as the topology defined by the seminorms  $(p_n)_{n \geq 1}$ .

d) Show that

$$d_1(x, y) = \sum_{n=1}^{\infty} \min \{2^{-n}, p_n(x-y)\}$$

is likewise a translation-invariant metric defining the same topology.

### Ex 2.5 (Two counterexamples)

a) **A metric-vector space but not TVS**

Consider the plane  $\mathbb{R}^2$  with the “Washington” metric

$$d(x, y) = \begin{cases} \|x - y\| & \text{if } x \text{ and } y \text{ are colinear,} \\ \|x\| + \|y\| & \text{otherwise.} \end{cases}$$

Show that scalar multiplication is continuous, but addition is not even separately continuous in this metric.

b) **Balls in metrizable LCTVS may be non-convex**

Consider  $C(\mathbb{R})$  with a countable family of seminorms

$$p_n(f) = \sup \{|f(x)| : x \in [-n, n]\}, \quad n \in \mathbb{N},$$

and an induced translation-invariant metric given by

$$d(f, g) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(f-g)}{1+p_n(f-g)}.$$

Define

$$f(x) = \max\{0, 1 - |x|\}, \quad g(x) = 100f(x-2), \quad h(x) = \frac{1}{2}(f(x) + g(x)),$$

and show that

$$d(f, 0) = \frac{1}{2}, \quad d(g, 0) = \frac{50}{101}, \quad d(h, 0) = \frac{1}{6} + \frac{50}{102}.$$

Hence the ball  $B(0, \frac{1}{2})$  is not convex.

**Remark:** One can show that  $B(0, r)$  is not convex for any  $0 < r < 1$ .